# INDIANA HARBOR AND CANAL MAINTENANCE DREDGING AND DISPOSAL ACTIVITIES – DESIGN DOCUMENTATION REPORT

## RAILROAD RELOCATION

### **APPENDIX F**

U.S. Army Corps of Engineers, Chicago District Civil Design Section, Design Branch

January 2000

# RAILROAD RELOCATION APPENDIX APPENDIX F

## TABLE OF CONTENTS

| PURPOSE AND SCOPE                                                       |
|-------------------------------------------------------------------------|
| GENERAL 1                                                               |
| SITE LAYOUT                                                             |
| General1                                                                |
| Railroad Alignment                                                      |
| Plan/Profile2                                                           |
| PROJECT FEATURES 2                                                      |
| General 2                                                               |
| Ballast System and Roadbed                                              |
| Design Criteria 3                                                       |
| Project Design Specifics                                                |
| Drainage Ditch4                                                         |
| Rail Track System4                                                      |
| Horizontal Curves4                                                      |
| Grades and Vertical Curves5                                             |
| Staging/Storage Areas                                                   |
| MATERIAL QUANTITIES5                                                    |
| General5                                                                |
| Quantities Generation                                                   |
| REAL ESTATE6                                                            |
| CONSTRUCTION SEQUENCE 6                                                 |
| ATTACHMENT 17                                                           |
| Design Criteria                                                         |
| <b>ATTACHMENT 2</b>                                                     |
| Design Calculation and Assumptions                                      |
| <b>ATTACHMENT 3</b>                                                     |
| Local Sponsor's Concurrence with Preliminary Railroad Relocation Design |
|                                                                         |
| LIST OF TABLES AND PLATES                                               |
| LIST OF TABLES AND TEATES                                               |
| Table F - 1 Railroad Relocation Material Quantities                     |
| Plate F - 1 Typical Cross-sections of Railroad Relocation               |
| Plate F - 2 Plan View of Railroad Relocation                            |
| Plate F - 3 Plan and Profile (1 of 4)                                   |
| Plate F - 4 Plan and Profile (2 of 4)                                   |
| Plate F - 5 Plan and Profile (3 of 4)                                   |
| Plate F - 6 Plan and Profile (4 of 4)                                   |
| Plate F - 7 Cross Sections (1 of 7)                                     |
| Plate F - 8 Cross Sections (2 of 7)                                     |
| Plate F - 9 Cross Sections (2 of 7)                                     |
| Time 1 7 closs bectons (5 of 1)                                         |

Plate F - 10 Cross Sections (4 of 7)

Plate F - 11 Cross Sections (5 of 7)

Plate F - 12 Cross Sections (6 of 7)

Plate F - 13 Cross Sections (7 of 7)

Plate F - 14 Soil Borings

Plate F - 15 Real Estate

#### PURPOSE AND SCOPE

- 1. The purpose of this appendix is to present the design criteria, engineering methods and procedures that were used to prepare a detailed railroad relocation and layout for rerouting the CSX side track crossing the ECI property to the northern portion of the property. This includes establishing the horizontal and vertical alignment, profiles and location of the relocated railroad track, calculating construction quantities and defining the real estate requirements.
- 2. The CSX Transportation Railroad Relocation is being performed as part of the Indiana Harbor and Canal (IHC) and Confined Disposal Facility (CDF) project. The project includes maintenance dredging of the IHC and disposal of the dredged materials in a CDF on the former Energy Cooperative, Inc. (ECI) oil refinery site. The CDF plan includes construction on a portion of the ECI property, which is separated by a 100 feet wide, multiple railroad track ownership/easement corridor. Most of the corridor was abandoned and is presently in use by one lead/side track operated by CSX Transportation. This lead track will be relocated to maximize an optimal dredged sediment placement plan that provides a more economical and constructable CDF design.

#### **GENERAL**

3. The project features consist of ballast system and roadbed, adjacent drainage ditches, grading, and slopes required for proper operation of the realigned railway track. The rail track system consists of the track line rails, ties, plates, spikes, anchors, and appurtenant supports. Requirements for implementing this plan include an optimal railway alignment for the relocated track including the curve design as appropriate and required for a single duo rail, side and lead commercial track line to compliment and fit the CDF perimeter, adjacent ditch and groundwater cut-off wall and the extension of the RCRA CAP under the relocated track. The groundwater cut-off wall is required to contain on-site contaminants as well as contaminants from the dredged material. For further information on the groundwater cut-off wall, see Appendix B, "Groundwater Protection". The track design will conform to standard American Railway Engineering Association (AREA) requirements with the first and last 150 to 190 feet of track to be constructed by the railway owners and the track relocation right-of-way (ROW) will not exceed 60 feet. While this appendix provides an overview of the railroad relocation, details regarded the RCRA CAP, the groundwater cut-off wall and utility relocations will be addressed during the preparation of final plans and specification.

#### SITE LAYOUT

#### General

4. The site layout design information was developed on a CADD computer system using existing digital topographic and planimetric mapping. All computer work was performed within the Micro-Station software system.

#### **Railroad Alignment**

- 5. Calculations to determine the alignment of the proposed Railroad relocation were done with 100' tangents between reversing curves. Existing data was taken from Micro-Station topographic file. An iterative mathematical solution could have been made by hand but given the number of unknowns, a direct solution yielding a 100' tangent was not possible. Further calculations were made by using a computer spreadsheet and GEOPAK COGO. The relocation alignment in the DDR, with respect to the northeast corner of the CDF, differs from that shown on Figure 24 (page 112) of the CMP. The siding now crosses Indianapolis Blvd at 90 degrees. This realignment was necessary so that the existing railroad crossing at Indianapolis Boulevard could be utilized therefore eliminating the need for resurfacing and an extensive new crossing protection system. The revised alignment was designed to maximize space for the CDF while causing minimal or no impacts to Indianapolis Blvd. Plate F-2 shows the railroad relocation layout.
- 6. The solution for the alignment for curves 1 and 2 was obtained graphically in Micro-Station by modifying the arc angle of curve 2 so that a 575 radius curve (#1) could meet a #10-turnout, as provided by the railway owners, where the relocation matches back into the existing rail.
- 7. In order to maximize the amount of space available for the CDF, a trial and error method was used to design curves 3 and 4. The solution that maximizes the area was one that has a 100' tangent between the two 575' (minimum radius) curves 3 and 4. This was obtained using an influence angle, I2 = 79.9d for curve 4 and an influence angle I1 = 51.598d for curve 3. The tangent between the curves is 100.118'. See Attachment 2 for all calculations and assumptions.

#### Plan/Profile

8. After the alignment was inputted, plan and profiles were derived using existing digital topographic and planimetric mapping. The proposed profile was designed so that the railroad sub-base would not be affected by any surface water runoff. The profile was also adjusted to allow for the design and construction of a 3' RCRA CAP underneath the relocated track within the R.R. ROW. Standard F size sheets (40" x 28") were produced with 1" = 50' scale. These were then reduced to plate size drawings (11" x 17"). Plates F-3 to F-6 show the profile with the corresponding plan view. Plates F-7 to F-13 show cross-sections along the profile.

#### **PROJECT FEATURES**

#### General

9. As discussed before, the project features include the ballast system and

roadbed, adjacent drainage ditches, grading, and slopes required for proper operation of the realigned railway track. The rail track system consists of the track line rails, ties, plates, spikes, anchors, and appurtenant supports. In general, the design of the features follows that which was proposed in the Comprehensive Management Plan (CMP) and the CSX Transportation, Guidelines and Specifications for Design and Construction of Commercial Tracks except for minor modifications based on more detailed design analyses. Each feature will be discussed below.

#### **Ballast System and Roadbed**

#### **Design Criteria**

- 10. Roadbed width, ditches and slopes shall conform to current CSXT standard roadbed and ballast for industry tracks. This includes 2% subgrade slope, 6" minimum compacted subballast, and 6" minimum ballast at grade point center-line of track. If track is super-elevated then 6" minimum ballast is required below tie under low rail. For cut sections, minimum width of 10' for ditch and 2' for bottom of ditch. Track and ditch gradients may increase ditch size and its distance from centerline of track, and slope can vary as needed for stability from 2:1 in sand to ½:1 in solid rock. For fill sections, slope as required by fill material (1½: 1 maximum) and geotextiles, if used, shall be placed between the top of the subgrade and the bottom of the subballast. Roadbed for commercial trackage within CSXT ROW and parallel to a main or operating track shall be constructed a minimum of 6 inches lower than that of the nearest main or operating track whenever drainage of the existing track can be affected by the new construction.
- 11. Turnout locations require additional roadbed to support the track structure and to provide proper walkways for CSXT train crews. CSXT requires that the roadbed taper from the existing section 100-feet preceding the point of switch (the point at which a track begins to diverge from another) to 18-feet from the centerline at the point of switch. The 18-foot roadbed is to extend from the point of switch to the transition with the 12-foot roadbed on the diverging track.

#### **Project Design Specifics**

- 12. The designed ballast system consists of a 9 ½ foot wide standard A.R.E.A. size 4-A ballast on a compacted 12" minimum sub-ballast with a 20-foot wide crest and 2H: 1V side slopes in typical cut cross-sections. 4-A ballast is defined as having 100% passing 2½ "screen size, 90-100% passing 2" screen, 60-90% passing 1½ "screen size, 10-35% passing 1" screen size, 0-10% passing ¾ "screen size and 0-3% passing 3/8 "screen size. Geotextiles are not required. In fill cross-sections, the sub-ballast crest widths vary. The crest width allows for a walkway extended from the centerline of the track on both sides. Plate F-1 shows typical cross-sections.
- 13. The subgrade shall be compacted and finished so that it directs water away from the track. The design slope is 2% from the centerline of the track on both sides. See Attachment 2 for all calculations and assumptions.

#### **Drainage Ditch**

- 14. The drainage system is sized to carry drainage without ponding of water against the roadbed. The ditch is designed to contain the drainage water as it filters into the site as normal. Drainage shall not be diverted, directed toward CSXT, or increased in quantity without prior approval and agreement with CSXT. Track roadbeds fills shall not be used as dams or levees for retention of water nor shall CSXT ROW be utilized for retention or settling basin.
- 15. The designed side slopes of the drainage ditch are 3H:1V with a 2-foot depth and 3-foot bottom width for constructability (Plate F-1). The profile was also raised so that the entire typical section is above the existing ground line.

#### Rail Track System

16. The rail track system consists of the track line rails, ties, plates, spikes, anchors, and appurtenant supports. The controlling elevation was the existing track elevations at the west and east ends of the project site. Curve information for each curve includes the intersection angle, degree of curve, radius, tangent distance, external and length of curve. Plate F-1 shows cross-sections of the rail track system.

#### **Horizontal Curves**

- 17. Trackage was designed using the minimum degree (maximum radius) of curve practicable. It is typical to use the chord definition of the degree of curve, which is defined as the central angle subtended by a 100 foot chord. It is denoted by Dc, where  $\sin \frac{1}{2} Dc = 50/R$ . Wherever practicable, a curve should begin beyond the last switch tie, but if required by special circumstances, a curve may extend onto the switch ties. In no case shall a curve begin between the point of switch and the heel of frog (the end of the point at which two running rails intersect within a turnout or crossing that is furthest from the point of switch).
- 18. A curve should be avoided at the loading point of a bulk loading facility or at an under track unloading structure. Spiral curves and super-elevations are not normally required, but, if required by special circumstances, shall be designed according to current CSXT standards. Tangents (straight sections), as specified in Attachment 1 Design Criteria, shall separate reverse curves (curves following each other in opposite directions).
- 19. The designed curves met the above criteria. As stated earlier, the designed alignment for curves 1 and 2 was obtained by modifying the arc angle of curve 2 so that a 575 radius curve (#1) could meet the #10-turnout. The design for curves 3 and 4 was one that has a 100.118' tangent between the two 575' (minimum radius) curves 3 and 4. Additional information is provided on plate F-2. See Attachment 2 for all calculations and assumptions.

#### **Grades and Vertical Curves**

- 20. Track grades are to the minimum possible, consistent with terrain requirements. Grades were carefully designed to ensure that motive power available will handle the tonnage to be moved. This takes into consideration number of cars, whether loaded or empty, etc. Grades for "Load / Unload in Motion" trackage were designed so that a train is under power with no bunching of couplers while loading or unloading.
- 21. Frequent changes of grade were avoided. Vertical curves were provided at all grade changes, and were as long as practicable. Minimum standards for calculation of vertical curves are specified in Attachment 1, Design Criteria. Neither grade changes nor vertical curves are within the limits of switch ties. The designed curve information is provided on plate F-2. See Attachment 2 for all calculations and assumptions.

#### **Staging/Storage Areas**

22. Staging/storage areas are provided within the existing CSXT ROW as shown on plate F-2. Details will be finalized during the preparation of plans and specifications.

#### MATERIAL QUANTITIES

#### General

23. Quantities were either manually calculated or computer calculated using the InRoads or MicroStation software. They consist of track complete in place, ballast, subballast, earth excavation, embankment, concrete removal, furnishing and placing topsoil and seeding, existing track to be removed, existing topsoil to be stripped, clay cap and #10 turnouts. The quantities are presented in table F-1.

#### **Quantities Generation**

24. Earthwork volume quantities include earth excavation, embankment and clay cap. Track complete in place length was taken between the stations 69+60.81 and 97+59.19. Ballast and sub-ballast tonnage was calculated. Concrete removal was calculated by taking the area of the concrete to be removed at a depth of 1 foot. Furnishing and placing topsoil and seeding was determined from the length of the relocation and the ROW with an allowance for the track complete in place to be installed. Track to be removed is assumed to be two complete sets of track line and includes removal of all tracks material and ties while existing ballast material will remain. All removed material is to be stockpiled on site. All removed material remains the property of the railroad and is stored for railroad pickup. Topsoil to be stripped was determined from the length of the relocation and the ROW Clay cap was determined from the ROW to the cut-off wall.

#### REAL ESTATE

25. Total land required for the railroad relocation is 4.11 acres. The real estate required for the track relocation and CAP requirements temporary work limits is equal to the permanent easements for the relocated track. All land required for the project is owned by the Non-Federal Sponsor except for ROW easements owned by the railroads. Plate F-15 shows the real estate for the railroad relocation.

#### **CONSTRUCTION SEQUENCE**

26. The first feature of the project to be constructed is the relocated railroad track. The RCRA cap will be installed within the relocated R.R. ROW. The sub-ballast and ballast system will be installed and then the railroad track will be constructed. Topsoil and seeding is done to complete the relocation work. As the relocated railroad track is brought on line, the existing track shall be abandoned. After the existing line is abandoned, the ROW will be stripped and excavated.

#### ATTACHMENT 1

### **Design Criteria**

Design criteria to be used for sidetracks with operating speeds no to exceed 15 mph are listed in the following table. The criteria are not intended for Yard and Terminal track, Intermodal track, Branch or Spur Lines, or any trackage with operating speed greater than 15 mph.

| CRITERIA               | INDUSTRY TRACK            | LEAD TRACK                | LOAD / UNLOAD IN      |
|------------------------|---------------------------|---------------------------|-----------------------|
| m                      |                           |                           | MOTION                |
| Turnout Size           |                           |                           |                       |
|                        | Number 8                  | Number 10                 | Number 10             |
| Note: turnouts in main |                           |                           |                       |
| tracks shall be No. 10 |                           |                           |                       |
| or larger              |                           |                           |                       |
| Maximum Curves         |                           |                           |                       |
| Degree                 | 12d-00'-00"               | 10d-00'-00"               | 10d-00'-00"           |
| Radius                 | 478.34'                   | 573.69'                   | 573.69'               |
| Tangent Between        |                           |                           |                       |
| Reverse Curves         |                           |                           |                       |
| Preferred              | 100'                      | 100'                      |                       |
| Minimum                | 60'                       | 60'                       | 100'                  |
| Maximum Grade          |                           |                           |                       |
| Loop Track             | 2.5%*                     | 2.5%*                     | 1.5%*                 |
| * Uncompensated        |                           |                           |                       |
| ** Compensated at      |                           |                           | 0.7%**                |
| 0.04% per degree of    |                           |                           |                       |
| curve                  |                           |                           |                       |
| Vertical Curve         |                           |                           |                       |
| Summits                | 40 x algebraic            | 40 x algebraic            | 400 x algebraic       |
|                        | differences in grades     | differences in grades     | differences in grades |
|                        | 5                         |                           |                       |
| Sags                   | 50 x algebraic difference | 50 x algebraic difference | 500 x algebraic       |
|                        | in grades                 | in grades                 | difference in grades  |
|                        | <i>6</i>                  | 6                         |                       |
| Length                 | 100' minimum              | 100' minimum              | 100' minimum          |
|                        |                           |                           |                       |

### ATTACHMENT 2

**Design Calculation and Assumptions** 

# URS Greiner Woodward Clyde CALCULATION COVER SHEET

| Client: USACOE Project Name: C                                                                                                                                                                                                                                             | SXTRACK RELOCATION                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Project/Calculation Number: 05-0003547                                                                                                                                                                                                                                     | 7.19                                                             |
| Title: FRELIMINARY DESIGN CALCULATION                                                                                                                                                                                                                                      | ONS AND QUANTITY TAKEOF                                          |
| Total Number of Pages (including cover sheet):                                                                                                                                                                                                                             | <del>-</del>                                                     |
| Prepared By: MARK T. HEATON                                                                                                                                                                                                                                                | Date:                                                            |
| Checked By: JANIEZ J. LOFTUS                                                                                                                                                                                                                                               | Date:                                                            |
| Description and Purpose:  DEVELOP AN ALIGNMENT FOR PANCE  ADDESSES CEXT COMMENTS AND  REMAINDER FOR CDF CONSTRUCTION                                                                                                                                                       | MBXIMIZES SITE                                                   |
| Design bases/references/assumptions:  O TOPO/CONTAIRS AND PREJIM. ACIENTA  O CONTAIRS AND PREJIM. ACIENTA  O COMPUTER GENERATED QUANTITY/DESIGN  USING MICROSPATION/EOPAK. | ED BY RENZOAD<br>ERNA 1946                                       |
| Remarks/conclusions:  ① HORIZONTAL ANGNMENT MEETS BOTH & ② PZELIM. REVIEW OF AUGNMENTS INDICA REQUIRED PRIOR TO CONSTRUCTION, BUT IS ACC ③ UTICITY CONFLICTS NOT SHOWN IN CALC APPROVAL OF PREUM. BLIGHMENTS.                                                              | LIE MINOR MODIFICATIONS BRE<br>CEPTABLE (e.g. 200'V-CE/10°CURVES |
| Calculation Approved By:                                                                                                                                                                                                                                                   | Date:                                                            |
| Project Manag                                                                                                                                                                                                                                                              |                                                                  |
| Revision No.: Description of Revision:                                                                                                                                                                                                                                     | Approved By:                                                     |
|                                                                                                                                                                                                                                                                            | Project Manager/Date                                             |



01/08/99

Engineers • Architects • Planner 122 South Michigan Avenue Suite 1970 Chicago, Illinois 60603 (312) 939-7704 Fax (312) 939-7372

## WVP Corporation "A Division of URS Greiner



CALCULATIONS TO DETERMINE
ALIGNMENT OF PROPOSED RR
RELOCATION WITH 100' TANGENT
BETWEEN BEVERSING CURVES.
EXISTING (GIVEN) DATA TAKEN FROM
TO PO FILE (MICROSTATION).

PREPARED BY: DAN COFTUS

DATE: 01/11/99





... WVP Corporation
A Division of URS Greiner

Engineers - Architects - Planne 122 South Michigan Avenue Suite 1970 Chicago, Illinois 60603 (312) 939-7704 Fax (312) 939-7372

Dan Loftus

T=Rook 2I

207904

WVP Corporation

\*\* A Division of URS Greiner

Engineers · Architects · Planns 122 South Michigan Avenue Suite 1970 Chicago, Illinois 60603 (312) 939-7704 Fax (312) 939-7372

Dan Loftus

28.302

61.0EN

65.65

61.0EN

61.0EN

61.0EN

389016





2899 a16







Engineers · Architects · Planner: 122 South Michigan Avenue Suite 1970 Chicago, Illinois 60603

Suite 1970 Chicago, Illinois 60603 (312) 939-7704 Fax (312) 939-7372

WVP Corporation
A Division of URS Greiner



15.72% split
assumption
N.4.

Engineers - Architects - Planner 122 South Michigan Avenue Suite 1970 Chicago, Illinois 50603 (312) 939-7704 Fax (312) 939-7372





• •

CF=T, +Tz +100 =(REJ,)+RE=z)+100

## CONCLUSION:

AN ITERATIVE MATHMATECAL SOCYTION
COULD BE MADE BY HAND, BUT GIVEN
THE NUMBER OF UNKNOWNS A DIRECT
SOLUTION SIELDING A 100.00 FOOT
TANGENT (DE) IS NOT POSSIBLE. FURTHER
CALCULATIONS WILL BE MADE USING
COMPUTER SPREADSHEET OR GEOPAK COGO.

9079



| Job COF/CSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project No. <u>Q5-000 35477, 19</u>                                                                                                                                                              | Page/_ of    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Description Track Relocation Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Computed by                                                                                                                                                                                      |              |
| SPINE TO THE PROPERTY OF THE P | Charled by                                                                                                                                                                                       | Date//       |
| TRIAL É ERROR FOR CURVES F<br>(GH = 939319<br>MESSURA L'IN MICROSINIEN CES.301° E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E=Z R=575'                                                                                                                                                                                       | Referen      |
| , G DC -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $= \overline{GF} = T_{Z} = R + \epsilon_{D}^{T_{Z}} / 2$ $= \overline{CD} = T_{I} - \overline{E} + \epsilon_{D}^{T_{I}} / 2$ $= \overline{CD} = T_{I} - \overline{E} + \epsilon_{D}^{T_{I}} / 2$ |              |
| I. 5' - 6 F IF AT DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 100 = min tryent letwer                                                                                                                                                                        | the E. curre |
| 6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (CSX standards) It<br>the one for the Combin                                                                                                                                                     | els- 1.11    |
| $T_{1/1} = \frac{95^{\circ}}{z_{1}}$ $T_{2} = \frac{95^{\circ}}{5}$ $T_{3} = \frac{95^{\circ}}{5} + \frac{15}{2} = \frac{627.502}{25}$ $0 = \frac{95}{25}$ $T_{4} = \frac{95^{\circ}}{5} + \frac{15}{2} = \frac{166.698}{66.698} = \frac{57}{7}$ $T_{5} = \frac{378.409}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO GOOD                                                                                                                                                                                          |              |
| T2: 482.482<br>9: 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO 6002                                                                                                                                                                                          |              |
| I, = 51.698<br>T1 = 278.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DF 7/00 153 198-100                                                                                                                                                                              |              |
| 3) Try IIz = 750!<br>Tz: 575-ton 52/2 = AA1. 213 =<br>0 = 105°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72 NO GOG:                                                                                                                                                                                       |              |
| W - 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VO 0003                                                                                                                                                                                          |              |
| I, = 16.6 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DE >100                                                                                                                                                                                          |              |

## URS Greiner Woodward Clyde

Job COI-/CSX \_\_\_\_\_ Project No. \_\_\_

\_\_\_\_\_ Computed by MTH

Sheet \_\_\_\_ of \_

Description \_\_\_\_

(:

Date

CURVES 122 Checked by \_\_\_\_\_

Reference

TRY /= 7950/ Tz = 478.222 d = 100.5

Na Caoq

DE >100

I.= 51.198 Ti= 275.481

TRY Iz = 75.8 Tz= 480.775 a = 100.Z

NO GOOD

12.769 : DE > 100

I, = 51.498 TI = 277.335

TRY I = 80.5 Tz = 480.7 = 3 4= 99.5

NO 600 D

DEL100 by 12.693

工,= 57.198 T, - 281.677

Try Iz = 79.9 Tz = 481.628 a = 100.1

Ves

DE = 100.118 = 100.

I.= 51.57F T= Z77,953

## URS Greiner Woodward Clyde

| Job COE/CSX                                      | Almand A Secure Control of the Control of the | Page of       |
|--------------------------------------------------|-----------------------------------------------|---------------|
|                                                  | Project No.                                   | Sheet of      |
| Description HOLIBONTAL ALIGNMENT FOR CURVES 3 F4 | Computed by MTH                               | Date _/-/4-99 |
| 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7          | Checked by                                    | Date          |

Reference

CONCLUSION.

IN ORDER TO MAXIMIZE THE AMOUNT OF SPACE AVAILABLE

FOR THE CONFINED DISPOSAL IMCILITY, A TRIAL SERROR

METHON WAS USED TO DESIGN CURVES 3 & A. THE SOLUTION

THAT MAXIMIZED THE AREA IS ONE THAT HAS A 100'

TANGENT BETWEEN THE TWO 575' (MIN RAD.) CURVES (3 & A).

THIS WAS OCTAINED USING AN INFLUENCE ANGLE, I; 79.9°,

FOR CORVE A & AN INFUENCE ANGLE, I, = 51.598° FOR

CURVE 3. THE TANGENT BETWEEN THE CURVES IS

100.118'

| Job COE/CSX Description HORIZONIAL ALIGNMENT FOR CUPUES 12 Z | Project No  Computed byH  Checked by | Page of<br>Sheet of<br>Date Date |
|--------------------------------------------------------------|--------------------------------------|----------------------------------|
| TRIAL 1                                                      | (CURVES 122)                         | Reference                        |
| X=87. 4879<br>I= 92.5721<br>T=575 Int 2 600 180              | NO 600D                              |                                  |
| Musule T = 602.0551                                          |                                      |                                  |
| 7×12/2<br>d: 87.1427<br>I= 92.8373<br>F/2=46.419             |                                      |                                  |
| TRIAL =3  L = &5.7978  L = 94.7072  =12-47.1011  T = 618.798 |                                      |                                  |
| TRIAL#4                                                      | = 6 ! T. X                           |                                  |

x= 85.4717 I= 94.5783 I/z = 47.789 T = 627.885 R= T/+on T/2= 565.009 => R = +0= 500

No & Good

| Job                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page  |     |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Description                    | Project No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sheet |     |
| CURVEC 17, 2                   | Computed by MTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date  | 17  |
| Alexander of Co                | Checked by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date  |     |
| TRIALES                        | The second secon |       | R   |
| 1 617 445                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| d 84.7255                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| 95 7745                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| F/2 7.657                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |
| Mucred 619. 724                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Go    | زخز |
| R T/ter 12 365 47 .            | > too 5 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |     |
| Mark on .                      | च्या विकास करते । च्या विकास   |       |     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| TRIAC IIG                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| 82.2926                        | .1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     |
| I 7.7074                       | NO 600D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |     |
| The 48 \$537                   | "(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |
| Mass 618.65 45                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r     |     |
| R                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
|                                | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |
| (Now broken Von 1 TORDONT Sto) | pf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     |
| TRAL =7                        | <i>k</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |
| × 291                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| F 9 7087                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| ton I/z 4447                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
|                                | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |
| 575 ten3/2 & 357               | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     |
| Messured 7 6 1398              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| pc 610 80                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     | ,.  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
| FRIAL #-8                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |

Oi.

 $\bigcirc$ 

| URS Greiner Woodward Clyde       | ·           |               |   |
|----------------------------------|-------------|---------------|---|
|                                  |             | Page of       |   |
| Job Coi/csx                      | Project No  | Sheet of      | - |
| Description HOPIZ. ALIKAMENT FOR | Computed by | Date 11-13-96 | - |
| (09.025 17.7                     | Checked by  | Date          |   |
|                                  |             | Reference     |   |

WMUST USE TRIAL É ERROR METHOD: CRAPHICACLY IN MICROTATION IN ORDER TO COT CURVE # 1 to MEET the \$10 TURNOUT

CONCLUSION

{

THE SOLUTION FOR THE ASIGNMENT FOR

CURVES IR Z LUMS CETAINED GRAPHICALLY

IN MICCOSTATION BY MODIFFIED THE ARC ANGLE

OF CURVE Z (GIVEN TO US BY COE) SO THAT

A STS RAS. CURVE HI COULD MEET A # 10

TURNOUT WHERE THE RELECATION MATCHES

BACK IALTO & KISYN, RAIL.

| und Greiner Woodward                       | d Clyde |            |                                     |
|--------------------------------------------|---------|------------|-------------------------------------|
| Job COE/CSX  Description VERTICAL CURVE 16 |         | Project No | Page of<br>Sheet of<br>Date<br>Date |
|                                            |         |            | Reference                           |

CSX STANMED SPECES.

115#

25.625 = 1.625

25.625 = 1.76775

31.625

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.76775

25.625 = 1.7677

# Design Proposed vertical profile to be approx 57.4 cs" above existing profile in order to minimize Cuts & fills.

Copyright (1993) GEOPAK Corporation

All rights reserved

Project: coe-csx Subject: alignment

Job No. 05

Operator: NH Wednesday January 20, 1999 11:07 am

Date:

SYSTEM FIX 4 ASEC 2 BEAR PRI 0 NOR NE STA 2 FILE: 'CHAIN'

#### Describe Chain CHAIN1

Chain CHAIN1 contains:

1000 1005 CUR C1 CUR C2 CUR C3 CUR C4 1045

Beginning chain CHAIN1 description

Foint 1000 N 1,513,722.6010 E 389,157.8190 Sta 68+10.81

GEOPAK

Tourse from 1000 to 1005 N 0" 22' 26.48" E Dist 31.2507

N 1,513,753.8510 E 389,153.0230 Sta 68+42.06

Course from 1005 to PC C1 N 6" 00' 52.95" E Dist 85.7099

#### Curve Data \*-----

| Durve Cl   |            |                  |      |                |   |              |
|------------|------------|------------------|------|----------------|---|--------------|
| P.I. Stati | ion        | 75+54.21         | N    | 1,514,462.0793 | Ε | 389,232.6434 |
| Delta      | •          | 94~ 54' 11.54"   | (RT) |                |   | ,            |
| Digree     | -          | 9" 57' 52.14"    |      |                |   |              |
| Tangent    | -          | 626.4392         |      |                |   |              |
| Length     | • , 1.     | 952.4147         |      |                |   |              |
| Redius     | •          | 575.0000         |      |                |   |              |
| External   | -          | 275.3241         |      |                |   |              |
| Long Chord | -          | 847.2124         |      |                |   |              |
| Mid. Ord.  | -          | 185.1777         |      |                |   |              |
| P.C. Stati | lon        | 69+27.77         | N    | 1,513,839.0890 | Ε | 389, 7.0040  |
| P.T. Stati | on         | 73+80.19         | N    | 1,514,343.4320 | Ε | 389, 7.7440  |
| T.C.       |            |                  | N    | 1,513,778.8395 | Ε | 389,8363     |
| Back       | - 1:       | 6" 00' 52.52" E  |      |                |   |              |
| Ahead      | <b>-</b> S | 79° 04' 55.94" E | ,    |                |   |              |
| Thord Bear | - N        | 53° 27' 58.29" E |      |                |   |              |
|            |            |                  |      |                |   |              |

#### Curve Data \*-----

| Crine C3       | ,                |      |                 |    |              |
|----------------|------------------|------|-----------------|----|--------------|
| P.I. Station   | 81+57.71         | H    | 1,514,290.8692  | Ε  | 390,120.2438 |
| Delta =        | 19~ 25' 00.71"   | (RT) | •               | _  | 0,0,220.2130 |
| Degree =       | 3" 20' 49.00"    |      |                 |    |              |
| Tangent =      | 277.5230         |      |                 |    |              |
| Length =       | 550.2588         |      |                 |    |              |
| Radius =       | 1,711.8826       |      |                 |    |              |
| External =     | 22.3495          |      |                 |    |              |
| Long Chord 🐷   | 547.8930         |      |                 |    |              |
| Mid: Ord. =    | 22.0615          |      |                 |    |              |
| P.C. Station   | 78+80.19         | N    | 1,514,343.4320  | E  | 389,847.7446 |
| P.T. Station   | 84+30.44         | N    | 1,514,154.9080  | _  | 390,362.1810 |
| c.c.           |                  | N    | 1,512,662.5344  |    | •            |
| Back ■ S       | 79^ 04' 56.03" E |      | 1, 4, 002. 3344 | E. | 389,523.5135 |
|                | 60° 39' 55.33" E |      |                 |    |              |
|                |                  |      |                 |    |              |
| Chord Bear - S | 69° 52' 25.63" E |      |                 |    |              |

Course from PT C2 to PC C3 S 60° 61' 51.80° E Dist 53.9599

1s this corrent print

Nost 2000 pater

Plans

Plans

Lizzlaa

Plans

Lizzlaa

| JAINE C3              |            |                  |      | · •            |       |              |
|-----------------------|------------|------------------|------|----------------|-------|--------------|
| '.I. Stat             | ion        | 87+67.35         | N    | 1,513,990.0186 | E !!! | 390,655.9835 |
| )#lta                 | •          | 51 35' 50.88"    | (RT) |                | _     | 3,0,633.9835 |
| र्की । } <b>१</b> । ४ | •          | 9 57' 52.14"     |      |                |       |              |
| ing At                | -          | 277.9502         |      |                |       |              |
| Length                | -          | 517.8138         |      |                |       |              |
| iadius                | -          | \$75.0000        |      |                |       |              |
| External              | -          | 63.6559          |      |                |       |              |
| Long Chord            | •          | 500.4929         |      |                |       |              |
| d. Ord.               | -          | 57.3112          |      |                |       |              |
| '.C. Stat             | ion        | 84+89.40         | N    | 1,514,126.0520 | E     | 300          |
| '.T. Stat:            | ion        | 90+07.22         | N    |                | E     | 390,413.5970 |
| :.c.                  |            |                  | N    |                | _     | 390,699.9450 |
| ack                   | - S        | 60° 41' 51.96" E | .,   | 1,513,624.6231 | E     | 390,132.1825 |
| Phead                 | - S        | 9" 06' 01.08" E  |      |                |       |              |
| mord Bear             | <b>-</b> s | 34" 53' 56.52" E |      |                |       |              |
|                       |            |                  |      |                |       |              |

## Curve Data

| Turve Ce                                    |                                                                                 | •••••  | •••••                                              |        |                                              |
|---------------------------------------------|---------------------------------------------------------------------------------|--------|----------------------------------------------------|--------|----------------------------------------------|
| urve C4 .I. Station elta = egree = angent = | 95+88.97<br>79 <sup>-</sup> 53' 59.74*<br>9 <sup>-</sup> 57' 52.14*<br>481.6272 |        | 1,513,141.1403                                     | E      | 350,791.5591                                 |
| adius .xternal .ong Chord .cid. Ord         | 501.8472<br>575.0000<br>175.0558<br>736.4361<br>134.2016                        |        |                                                    |        |                                              |
|                                             | 99+09.19<br>9° 06' 01.67" E<br>69° 00' 01.41" E<br>49° 03' 01.54" E             | N<br>N | 1,513,616.7050<br>1,513,132.7360<br>1,513,707.6505 | E<br>E | 390,715.7820<br>391,273.5130<br>391,283.5442 |

Durse from PT C4 to 1045 S 86° 59' 59.58" E Dist 90.8078

pint 1045 N 1,513,13k.1530 E 351,364.3070 Sta 100+CG.00

ding chain CHAIN1 description



OLD PROFILE



# URS Greiner Woodward Clyde

| Job_COE/CSX                | Project No.     | Sheet | of      |
|----------------------------|-----------------|-------|---------|
| Description DRAINAGE DITCH | Computed by MTH | Date  | 7-10-88 |
|                            | Checked by      | -Qate |         |

## DRAINAGE DITCH ALONG PROPOSED ALIGNMENT

see comments Reference on plans regarding drainage ditch(es)

DUE TO THE VERY FLAT TOPOGRAPHY OF THE SITE A DITTALITH SITE A DITTALITH SITE A DITTALITH SITE A DITTALITH SITE SIDES OF SLOPE GRADIENT & A 1 FOOT MINIMUM DEPTH WAS PROPOSED TO ROUTE WATER AWAY FROM THE TEOPOSED PAUROAD ALIGNMENT. THE DITCH WAS PROPOSED TO RUN ALONG THE SOUTH SIDE OF THE PROPOSED ALIGNMENT, STARTING AT THE EAST END AND MATCHING EXISTING GROUND AT THEWEST END.

THIS DID NOT WORK DUE TO THE EXTREMELY FLAT TOPOGRAPHY.

A DITCH WITH THIS MIN. YOPE GRADIENT WOULD NOT MATCH

EXISTING AT THE WEST END OF THE PROPOSED & ALIGNMENT.

#### SOLUTION:

- TRAISE THE PROPOSED PROFICE SO THAT THE TYPICAL
  SECTION IS AT OR ABOVE THE EXISTING GROUND LINE.
  THIS WOULD ALLOW THE SUB-BACLAST TO ACT AS THE
  SIDE SLOPE OF A NATURAL DITCH & THE WATER WOULD
  FLOW NATURALLY ALONG THE PROPOSED ALIGNMENT
- OUSE A 3:1 SIDE SLOPE DITCH WITH A ZFOOT DEPTH &

  NO SLOPE GRADIENT. THE DITCH WILL CATCH ANY RUNDER

  THAT THE RAILROAD BED WILL NOT BE AFFECTED.
- FOLUTION D WAS USED ALONG WITH RAISING THE PROFILE SO THAT
  THE ENTIRG TYP. SECT. IS ABOVE THE EXISTING & GROUND LINE.

  THE ENTIRG TYP. SECT. IS ABOVE THE EXISTING & GROUND LINE.

  THE BECAUSE OF THE FLAT TO POGRAPHY & THE SANDY SOILS

  (BORING LOGS) THE WE DON'T EXPECT MUCH RUNGER IN THE

  AREA OF THE PROPOSED ALIGNMENT, BUT THE DITCH IS A

  SAFEGUAR'S IN THE CASE THAT SOME RUNDER OCCURS.



**Table F - 1 Railroad Relocation Material Quantities** 

| Item              | Unit         | Contractor | Railroad | Total Quantity |
|-------------------|--------------|------------|----------|----------------|
| Track Complete in | LINEAR FEET  | 2,798      | 183      | 2,981          |
| Place             |              |            |          |                |
| Ballast           | TONS         | 1,628      | 104      | 1,732          |
| Sub-Ballast       | TONS         | 6,029      | 692      | 6,721          |
| Earth Excavation  | CUBIC YARDS  | 4,926      | 0        | 4,926          |
| Embankment        | CUBIC YARDS  | 0          | 0        | 0              |
| Concrete Removal  | SQUARE YARDS | 476        | 0        | 476            |
| Furnishing and    | SQUARE YARDS | 15,260     | 0        | 15,260         |
| Placing Topsoil   |              |            |          |                |
| and Seeding       |              |            |          |                |
| Track to be       | LINEAR FEET  | 5,321      | 0        | 5,321          |
| Removed           |              |            |          |                |
| Topsoil to be     | SQUARE YARDS | 21,662     | 0        | 21,662         |
| Stripped          |              |            |          |                |
| Clay Cap          | CUBIC YARDS  | 18,720     | 0        | 18,720         |
| #10 Turnout       | EACH         | Q          | 1        | 1              |
| Silt Filter Fence | FOOT         | 4,080      | 0        | 4,080          |

| URS Greiner Woodward Clyde                  |            |            |                         |
|---------------------------------------------|------------|------------|-------------------------|
| Job <u>COF/CSX</u>                          | Project No | Page Sheet | ·                       |
| Description PROFILE & CROSS SECTION CHANGES |            |            | of<br>_ <i>5/17/9</i> 9 |
| FOR BACKSHEEK SUBMITTAL PER 10090 CONNER    |            | Date       |                         |
|                                             |            |            | Reference               |

PROFILE WAS RAISED A TO ALLOW FOR A Z'RCRA CAP TO BE
PLACED THROUGHOUT THE GO' IC. FASEMENT. THE NEW GUANTITIES
ARE SHOWN ON THE FOLLOWING PAGE



· CROSS SECTIONS WERE RECUT @ 5 INTHE BOTH THE VERTICAL &
THE HORIZONTAL. TOPSOIL, STRIPPING & REGRACAP SHOWN IN ALL CROSS
SECTIONS

THE DITCH WAS CHANGED FROM A 1' BOTTOM TO A 3' BOTTOM FOR CONSTRUCT ABILITY

## COE/CSX TRANSPORTATION TRACK RELOCATION AT THE INDIANA HARBOR CONFINED DISPOSAL FACILITY



Project #: 0500035477.19 Computed by: MTH July 14, 1999

## **SUMMARY OF QUANTITIES**

| ITEM                    | UNIT    | TOTAL QUANTITIES | CONTRACTOR | RAII ROAD |
|-------------------------|---------|------------------|------------|-----------|
| ITEM                    | UNIT    |                  |            |           |
| TRACK COMPLETE IN PLACE | L.F     | 2981             | 2798       | 183       |
| BALLAST                 | TONS    | 1732             | 1628       | 104       |
| SUB-BALLAST             | TONS    | 6721             | 6029       | 692       |
| EARTH EXCAVATION        | CU. YD. | 4926             | 4926       | 0         |
| EMBANKMENT              | CU. YD. | DAS I DO THAT    | 46.00      | Thos Oak  |
| CONCRETE REMOVAL        | SQ. YD  | 476              | 476        | 0         |
| FURNISHING AND PLACING  | SQ. YD  | 15260            | 15260      | 0         |
| TOPSOIL AND SEEDING     |         |                  |            |           |
| TRACK TO BE REMOVED     | L.F.    | 5321             | 5321       | 0         |
| TOPSOIL STRIPPING       | SQ. YD. | 21662            | 21662      | 0         |
| CLAY CAP                | CU. YD. | 18720            | 18720      | 377 O2    |
| #10 TURNOUT             | EACH    | 1                | 0          | 1         |
| SILT FILTER FENCE       | FOOT    | 4080             | 4080       | 0         |



## COE/CSX TRANSPORTATION TRACK RELOCATION AT THE INDIANA HARBOR CONFINED DISPOSAL FACILITY

PROJECT #: 0500035477.19
DESCRIPTION: CUT AND FILL QUANTITIES

COMPUTED BY: MTH.

DATE:

May 21, 1999

AVG VOLUME (cy) = [D(A1+A2)/2)/27

A1=AREA1 (sf) A2=AREA2 (sf)

DEDISTANCE BETWEEN AREAS

EE=EARTH EXCAVATION
FE=PROPOSED EMBANKMENT
SB=PROPOSED SUB-BALLAST
B=PROPOSED BALLAST

| STA      | EE<br>(sf) | EMB<br>(sf) | SB<br>(sf) | B (sf) | VOL EE<br>(cy) | VOL EMB   | VOL SB<br>(cy) | VOL B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|------------|-------------|------------|--------|----------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6810.811 | 0.0        | 0.0         | 0.01       | 0.0    |                | TO SECURE | Coyl           | Cy /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6900     | 48.1       | 0.0         | 13.1       | 4.7    | 79.4           | 0.01      | 21.6           | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7000     | 60.0       | 0.0         | 22.0       | 7.7    | 200.1          | 0.0       | 0.01           | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 71001    | 96.7       | 0.0         | 22.01      | 7.7    | 290.2          | 0.0       | 81.5           | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7200     | 7.31       | 0.0         | 23.1       | 7.7    | 192.6          | 0.0       | 83.51          | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7300     | 7.11       | 0.0         | 43.4       | 7.7    | 26.7           | 0.01      | 123.11         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7400     | 6.9        | 0.0         | 60.51      | 7.7    | 26.0           | 0.0       | 192.4          | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7500     | 6.9        | 0.0         | 82.7       | 7.7    | 25.6           | 0.0       | 265.11         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7600     | 7.01       | 0.0         | 86.01      | 7.7    | 25.7           | 0.0       | 312.31         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7700     | 7.01       | 0.01        | 82.9       | 7.7    | 25.9           | 0.0       | 312.8          | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7800     | 6.5        | 0.0         | 76.7       | 7.7    | 25.0           | 0.01      | 295.61         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7900     | 6.7        | 0.0         | 76.1       | 7.7    | 24.4           | 0.0       | 283.01         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8000     | 7.7        | 0.01        | 73.8       | 7.7    | 26.7           | 0.01      | 277.61         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8100     | 6.7        | 0.0         | 56.9       | 7.7    | 26.7           | 0.01      | 242.0          | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 82001    | 6.71       | 0.01        | 55.2       | 7.7    | 24.8           | 0.0       | 209.41         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8300     | 7.11       | 0.0         | 56.4       | 7.7    | 25.6           | 0.01      | 208.51         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8400     | 6.9        | 0.0         | 46.8       | 7.7    | 25.9           | 0.01      | 191.11         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8500     | 7.01       | 0.0         | 48.9       | 7.7    | 25.7           | 0.01      | 177.21         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8600     | 7.01       | 0.01        | 51.01      | 7.7    | 25.9           | 0.0       | 185.01         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8700     | 7.61       | 0.01        | 50.01      | 7.7    | 27.0           | 0.01      | 187.01         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 88001    | 6.81       | 0.01        | 57.11      | 7.7    | 26.7           | 0.0       | 198.31         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8900     | 7.21       | 0.0         | 48.8       | 7.7    | 25.9           | 0.01      | 196.11         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 90001    | 6.61       | 0.01        | 45.7       | 7.71   | 25.6           | 2.01      | 175.01         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 91001    | 6.91       | 0.01        | 48.81      | 7.7    | 25.0           | 0.0       | 175.01         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9200     | 7.3        | 0.0         | 52.9       | 7.7    | 26.3           | 0.01      | 188.3          | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9300     | 5.81       | 0.0         | 52.2       | 7.7    | 24.3           | 0.01      | 213.11         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9400     | 6.1        | 0.01        | 42.0       | 7.71   | 22.0           | 0.01      | 193.01         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9500     | 138.9      | 0.0         | 67.9       | 7.7    | 268.5          | 0.01      | 203.51         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 96001    | 147.7      | 0.01        | 37.3       | 7.7    | 530.8          | 0.0       | 194.81         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 97001    | 190.81     | 0.0         | 22.0       | 7.7    | 626.9          | 0.01      | 109.81         | the second secon |
| 98001    | 224.21     | 0.01        | 22.01      | 7.7    | 768.4          | 0.0       |                | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9909.19  | 6,01       | 0.0         | 0.0        | 0.0    | 453.21         | 0.01      | 81.5<br>44.5   | 28.5<br>15,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |            |             |            |        | 3973.6         | 0.0       | 5521.9         | 844.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

TOTAL EARTH EXCAVATION: 3974 cy
TOTAL EMBANKMENT: 0 cy
TOTAL SUB-BALLAST: 5622 cy
TOTAL BALLAST: 845 cy

RB





Prepared By:

URS Greiner Woodward Clyde



US Army Corps of Engineers CSXT Track Relocation at the Indiana Harbor CDF

**Construction Sequence Schedule** 



## **ATTACHMENT 3**

**Local Sponsor's Concurrence with Preliminary Railroad Relocation Design** 



VICE-PRESIDENT EDWARDO MALDONADO PRESIDENT FRANK KOLLINTZAS

EXECUTIVE DIRECTOR
ADRIANE ESPARZA

ROBERT A. PASTRICK MARINA 3301 ALDIS AVENUE EAST CHICAGO, IN 46312

June 10, 1999

Sterling Johnson, ED-DC US Army Corps of Engineers 111 N. Canal Street, Suite 600 Chicago, IL 60606

Re: CSX Transportation Track Relocation at the Indiana Harbor Confined Disposal Facility

Dear Mr. Johnson:

The East Chicago Waterway Management District has reviewed the final design memorandum for the above project and has no additional comments.

Sincerely,

Adriane Esparza

AE/ae





















US Army Corp of Engineers Chicago Distric URS GREINER WOODWARD CSX TRANSPORTATION
TRACK RELUCATION AT THE
HODANA HARBOR
COMPRED DISPOSAL FACULTY
PLAN AND PROFILE SEET REFERENCE NUMBER 7

DIATE





PLATE

E F-8









|     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | <b>  </b>   |
|-----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|-----------------------|--------------|-------------|
| 590 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       | - 100 5 70 1 100 100  | W f at any   | 590         |
| 585 |                      | TO SEA SEC ON SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                       | H.F.K.                |              | 585         |
| 580 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | 580         |
| 575 |                      | STATE OF STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in the Table That David. |                                       | ACCUPATION CONTRACTOR |              | 575         |
| 570 |                      | STEP STORY CALL STURING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DEC. SING                |                                       |                       |              |             |
| 565 | 護                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | 570         |
|     | 能                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T T                      | THE CAT IT ELV. SAS                   | <b>2</b>              | 86<br>86     | 565         |
| 560 | SET PAI SET CLU, THE | 第                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 選                                     | CAT, SAILMAID         | Be is the on | 560         |
| 555 | ·                    | STATE OF THE CONTROL  | REGION OF THE LOW        | Side of Calary and                    | Auston, edi           |              | 555         |
| 550 | D 10 F 100 C 101.004 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       | DB # 8000 001.50      |              | 550         |
| 545 | 4                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DR ST JONE D.C. SHA      |                                       |                       | 134          | 545         |
| 540 | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | DE S. 1896. D.D. 1405                 |                       |              | 540         |
| 535 | 3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | 535         |
| 530 | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | 530         |
| 525 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | Name of the |
| 520 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | 525         |
|     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | 520<br>515  |
| 515 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | # # # # # # # # # # # # # # # # # # # |                       |              | 515         |
| 510 |                      | AND THE TOTAL THE TANK THE PARTY OF THE PART |                          |                                       |                       |              | 510<br>505  |
| 505 |                      | Acres 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                       |                       |              | 505         |
| 500 | )                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | 500         |
| 495 | ß                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                       |              | 495         |
| 490 | )                    | an gre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                       |                       |              | 490         |
| 485 |                      | STATE OF THE PROPERTY OF THE P |                          |                                       |                       |              |             |
| 480 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 1772                                  |                       |              | 485         |
|     |                      | COLUMN DIV. (N.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                       |                       |              | 480         |
| 475 |                      | DD # 1000 D. D. 414.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                       |                       |              | 475         |
| 470 | BORING CE-IO5        | BORING CE-IO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORING CE-IO2            | BORING CE-IOI                         | BORING CE-IO8         |              | 470         |



